
Don’t build that app!
No Babel. No Webpack. No Worries.



@lukejacksonn
Frontend Developer at Formidable







1. Browser support for language features

2. Splitting up your code into modules





Oh I’m sorry.. I just wanted 
to write some HTML, CSS 
and a bit of JS
Me, when some peer dependency of a dev dependency needs updating 
which prevents the project from building and that requires fixing before I 
can actually do my job.









5.4 create-react-app
per gigabyte



E = mc2



I don't know what's the matter with people: they don't 

learn by understanding, they learn by some other way 

— by rote or something. Their knowledge is so fragile!

― Richard Feynman



REBUILD ALL 
THE TOOLING 

MYSELF
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<script type=”module” src=”...”></script>



// Static Import

import { something } from ‘./somewhere.js’



// Dynamic Import

import(‘./somewhere.js’)
  .then(module => console.log(module))



import { something } from ‘./somewhere.js’

…
 
{
  onClick: () => import(‘./expensive.js’)
    .then(module => console.log(module))
}



Code-Splitting
To avoid winding up with a large bundle, it’s good to get ahead of 
the problem and start “splitting” your bundle.

The best way to introduce code-splitting into your app is through 
the dynamic import syntax.

https://reactjs.org/docs/code-splitting.html

https://reactjs.org/docs/code-splitting.html


const Home = React .lazy(() => import(‘./routes/home.js’))

...

<React.Suspense>

<Home />

</React.Suspense>





1. Browser support for language features

2. Splitting up your code into modules



The world is my 
🦞



JSX



I wanted to use Virtual DOM [JSX], 
but I wanted to eschew build tooling 
and use ES Modules directly.

Jason Miller (@developit)





○ Less than 600 bytes

○ No transpiler necessary

○ Optional quotes

○ Self closing components

○ class == className

○ Multiple root elements

○ Comment support

○ Syntax highlighting via 

the lit-html extension.







UNPKG
unpkg.com/:package@:version/:file

A CDN MIRROR OF NPM









https://github.com/lukejacksonn/csz





https://unpkg.com/package@version/file.extension

Always be explicit about your imports..

- Avoid cascading breaking changes
- Skips unpkgs resolution step
- Prevents unwanted injection
- Straight forward static analysis





https://unpkg.com/react?module

(the ?module suffix tells unpkg to go look for the es module build 
of the package)

https://unpkg.com/react?module




🚧
This might happen a lot until package authors start 

shipping unbundled versions















🚧
Resolving external dependencies of dependencies 

is still not really a solved problem













1. Scans your source code looking for dependencies

2. Downloads and turns the dependencies into es-modules

3. Tree shakes any unused code from dependencies

4. Puts resultant modules into a folder called web_modules





https://github.com/lukejacksonn/create-es-react-app



4784 create-es-react-app
per gigabyte



https://perf.link  ☝

https://runpkg.com   👉

https://gist.link 👉

https://perf.link
https://runpkg.com
https://gist.link


The landscape is changing

Of course whenever there is a fundamental shift in paradigms there is going to be 

resistance and people are going to find edge cases where the application of an idea is 

inappropriate. However, I have seen a lot of different architectures in my time as a developer 

and firmly believe that the simplicity of an ES module architecture is revolutionary and will 

be sufficient for the majority of use cases.





@lukejacksonn
Follow me on Twitter and Github for news and updates!

https://formidable.com/blog/2019/no-build-step

https://formidable.com/blog/2019/no-build-step/

