
Don’t build that app!
No Babel. No Webpack. No Worries.

@lukejacksonn
Frontend Developer at Formidable

1. Browser support for language features

2. Splitting up your code into modules

Oh I’m sorry.. I just wanted
to write some HTML, CSS
and a bit of JS
Me, when some peer dependency of a dev dependency needs updating
which prevents the project from building and that requires fixing before I
can actually do my job.

5.4 create-react-app
per gigabyte

E = mc2

I don't know what's the matter with people: they don't

learn by understanding, they learn by some other way

— by rote or something. Their knowledge is so fragile!

― Richard Feynman

REBUILD ALL
THE TOOLING

MYSELF

1. Browser support for language features

2. Splitting up your code into modules

1. Browser support for language features

2. Splitting up your code into modules

��

<script type=”module” src=”...”></script>

// Static Import

import { something } from ‘./somewhere.js’

// Dynamic Import

import(‘./somewhere.js’)
 .then(module => console.log(module))

import { something } from ‘./somewhere.js’

…

{
 onClick: () => import(‘./expensive.js’)
 .then(module => console.log(module))
}

Code-Splitting
To avoid winding up with a large bundle, it’s good to get ahead of
the problem and start “splitting” your bundle.

The best way to introduce code-splitting into your app is through
the dynamic import syntax.

https://reactjs.org/docs/code-splitting.html

https://reactjs.org/docs/code-splitting.html

const Home = React .lazy(() => import(‘./routes/home.js’))

...

<React.Suspense>

<Home />

</React.Suspense>

1. Browser support for language features

2. Splitting up your code into modules

The world is my
🦞

JSX

I wanted to use Virtual DOM [JSX],
but I wanted to eschew build tooling
and use ES Modules directly.

Jason Miller (@developit)

○ Less than 600 bytes

○ No transpiler necessary

○ Optional quotes

○ Self closing components

○ class == className

○ Multiple root elements

○ Comment support

○ Syntax highlighting via

the lit-html extension.

UNPKG
unpkg.com/:package@:version/:file

A CDN MIRROR OF NPM

https://github.com/lukejacksonn/csz

https://unpkg.com/package@version/file.extension

Always be explicit about your imports..

- Avoid cascading breaking changes
- Skips unpkgs resolution step
- Prevents unwanted injection
- Straight forward static analysis

https://unpkg.com/react?module

(the ?module suffix tells unpkg to go look for the es module build
of the package)

https://unpkg.com/react?module

🚧
This might happen a lot until package authors start

shipping unbundled versions

🚧
Resolving external dependencies of dependencies

is still not really a solved problem

1. Scans your source code looking for dependencies

2. Downloads and turns the dependencies into es-modules

3. Tree shakes any unused code from dependencies

4. Puts resultant modules into a folder called web_modules

https://github.com/lukejacksonn/create-es-react-app

4784 create-es-react-app
per gigabyte

https://perf.link ☝

https://runpkg.com 👉

https://gist.link 👉

https://perf.link
https://runpkg.com
https://gist.link

The landscape is changing

Of course whenever there is a fundamental shift in paradigms there is going to be

resistance and people are going to find edge cases where the application of an idea is

inappropriate. However, I have seen a lot of different architectures in my time as a developer

and firmly believe that the simplicity of an ES module architecture is revolutionary and will

be sufficient for the majority of use cases.

@lukejacksonn
Follow me on Twitter and Github for news and updates!

https://formidable.com/blog/2019/no-build-step

https://formidable.com/blog/2019/no-build-step/

